Half Lives and Decay Equations

1	Most elements have some isotopes which are radioactive.	
	What is meant by the term radioactive?	
		(1 mark)

1 (a) The graph shows how the number of nuclei in a sample of the radioactive isotope Uranium-238 changes with time.

1 (a) (i) Use the graph to find the half-life of uranium-238.

Show clearly on the graph how you obtain your answer.

This question continues on the next page.

my-GCSEscience.com ESPQ|PHY2|HLNDE

1 (a) (ii) Complete the following table for an atom of uranium-238.

Mass number	238
Number of protons	92
Number of neutrons	

²³⁸₉₂ **U** ²³⁴₉₀ Th

1 (a) (iii)	An atom of uranium-238 decays to form an atom of thorium-234
	What type of radiation, alpha, beta or gamma, is emitted by uranium-238?
	(1 mark)

1 (b) An atom of actinium-228 decays by emitting a beta particle, β . A neutron in the nucleus changes into a proton and an electron. The electron is ejected, while the neutron remains.

An isotope of thorium is left behind.

Complete the equation for this decay.

(2 marks)

(Total 7 marks)

Login or subscribe to my-GCSEscience.com to see the answers and commentary.

my-GCSEscience.com ESPQ|PHY2|HLNDE