A student v	vas given three cor	mpounds in s	solution.	
	Solution 1		Solution 2	Solution 3
The studen	it was told the nam	es of the cor	mpounds, but n	ot which was in which tube
The names	of the compounds	s are:		
	Lithium sulfate	Potassi	um carbonate	Sodium nitrate
Describe th	ne test that could b	e would iden	tify each solutio	on. [8 m
Lithium sul	fate			
Potassium	carbonate			
Sodium niti	rate			

	2	Cleaning chemicals sometimes contain ammonia in solution.
		The amount of ammonia in ammonia solution can be found by titration using nitric acid.
		25.0 cm ³ of ammonia solution is placed in a conical flask.
		Describe how the volume of dilute nitric acid required to neutralise this amount of household ammonia can be found accurately by titration.
		Name any other apparatus and materials used. [4 marks]
		[
2	2 (a)	It was found that 25.0 cm3 of household ammonia was neutralised by 20.0 cm3 of dilute nitric acid with a concentration of 0.25 moles per cubic decimetre.
		The balanced symbol equation which represents this reaction is
		$NH_3(aq) + HNO_3(aq) \rightarrow NH_4NO_3(aq)$
		Calculate the concentration of the ammonia in this household ammonia in moles per cubic decimetre.
		[2 marks]
		Concentration = moles per cubic decimetre
		Login or subscribe to my-GCSEscience.com to see the answers and commentary